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Abstract

I propose to analyze incompressible flow of a Newtonian

Fluid past a vertical, flat plate with thermal and magnetic

stresses. This analysis will include deriving the equations

governing the fluid velocity and the temperature distribution.

The equations governing fluid velocity will be derived

from a force balance approach. We shall consider the forces

that act on a differentially small parcel of fluid to

determine its behavior.

The equations governing temperature will be derived from

the principle of conservation of energy. Energy and

temperature are closely related. In fact, in an

incompressible fluid temperature is a direct measurement of

internal energy.

These equations will then be programmed to provide a

computer simulation for predicted velocity and temperature

fields for various parameters. These simulations will tell us

whether or not it is possible to "shape" velocity and

temperature distributions using magnetic fields. Possible

applications include heat exchanges and any transfer process

using fluid flow as a transport medium.



Abstract

This study is an analysis of incompressible flow of a Newtonian

fluid past a vertical, flat plate with thermal and magnetic fields.

This analysis will include deriving the equations governing the

fluid velocity and the temperature distribution.

The equations governing fluid velocity will be derived from the

conservation of linear momentum. Gravitational forces, thermal

forces, electromagnetic forces, and viscous forces are considered.

The equations governing temperature will be derived from the

principle of conservation of energy. Energy and temperature are

closely related. In fact, in an incompressible fluid temperature

is a direct measurement of internal energy.

These equations will then be programmed to provide a computer

simulation for predicted velocity and temperature fields for various

parameters. These simulations will tell us whether or not it is

possible to "shape" velocity and temperature distributions using

magnetic fields. Possible applications include heat exchangers and

any transfer process using fluid flow as a transport medium.
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Chapter One

Definition of

Variables and the

Geometry of the Study

The first step in formulating a solution to a problem

in fluid mechanics is to understand the geometry of the

problem and define all variables involved.

This problem involves a Newtonian Fluid in a steady,

incompressible flow past a vertical plate with thermal and

magnetic fields.

To

v

k

J i

U._ ,T.

Figure 1-1

Note: this is a left-handed system, therefore i x j = -k.
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The following variables will be used throughout the

discussion:

V= v= velocity= (ui + v5 +wJ), m

S

u = velocity in the x-direction, -

s
v = velocity in the y-direction, m

S

w = velocity in the z-direction, __

s

L = length of plate, m

To = Temperature of plate, K

U. = free stream velocity, m
S

T_ = free stream temperature, K

S= absolute viscosity = 0 . 001 kg for wa terMIS

p = density = 1000 -1__ for waterm3

v = kinematic viscosity = IXIO-6 for water
p s
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a = charge density, Cm 3

B = B = magnetic field strength, kgC's

k coefficient of thermal conductivity ,-
5K

CP heat capacity (constant pressure), J
kg'K

M = magnetic index number = LaB
u.,p

U.L
Re = Reynold's number -

V

The physical situation being analyzed is an

incompressible, Newtonian fluid flowing past a flat plate of

length L at a rate U.. The plate is at uniform temperature

To. The ambient fluid is at a different temperature T-.

Define the x-direction as the direction along the length of

the plate, the y-direction as the direction perpendicular to

the plane of the plate, and the z-direction as the vertical

direction, perpendicular to both the x- and y-directions.

Additionally, define u as the velocity component in the x-

direction, v as the velocity component in the y-direction,

and w as the velocit component in the z-direction.

The analysis is limited to two dimensions such that the

velocity field is a function of x and y and the temperature

field is a function of x and y.
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Chapter Two

Derivation of

Equations Governing

Velocity Distribution

In this chapter, the partial differential equations

governing fluid motion are derived from the conservation of

linear momentum. The result is two equations, one for the

balance of forces in the x-direction and one for the balance

of forces in the y-direction.

These equations are derived from Newton's Second Law of

motion:

(mra) 2-1
dt

For an incompressible flow, this means:

p PdV-!L 2-2

Where dV is a differential element of volume.

For steady two-dimensional flow Eq. 2-2 can be written as:

au +u, 1 , Ov v. 2-3
ax V ax vay- 3

Two types of forces are considered: bocy forces and

surface forces. Body forces are forces that may be

considered to act through the center of mass of the control

volume of the fluid. The body forces that are treated are

gravity, thermal forces, and electromagnetic forces.
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Surface forces act on the surface of a control volume of

fluid. Surface forces are expressed as the integral of the

stresses over the control surface.'

Gravity exerts a force on a differentially-small

element of fluid in the following manner:

P, =pdI4 2-4

dV

F9

Figure 2-1

Because this force acts only in the z-direction one neglects

its effects in horizontal planar flow.

Thermal forces are convective and are caused by changes

2in fluid density due to temperature

c p d-p (T1-T 2 ) 2-5

Since this force acts in the z-direction it may be

neglected.

'Robert A. Granger, Fluid Mechanics (New York: Holt,
Rhinehart and Winston, 1985) 187.

2Adrian Bejan, Convective Heat Transfer (New York: John
Wiley and Sons, 1984) 114.
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The electromagnetic force is expressed as 3:

x Bý=cN'd x 2-6

q v

Figure 2-2

Sigma is the charge density and B is the magnetic field

strength. Considering only forces in the x- and y-

directions Eq. 2-6 simplifies to:

FB=odV(-vB I+uB~j) 2-7

Consider next the surface forces. Figure 2-3 shows a

differentially-small element of fluid with dimensions

(dx,dy,dz), with assorted stresses being applied. 4

3Paul A. Tipler, Physics for Scientists and Engineers (New
York: Worth Publishers Inc., 1991) 783.

'Dr. Hermann Schlichting, Boundary Layer Theory (New York:
McGraw-Hill Book Co. 1968) 253.
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:YZ'x z
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Figure 2-3

Where:

t~=searstress in the b-direction from shear in the a-plane

a = stress, NOT charge density

Summing the focrces in the x-direction

acy (O '-dx-ax)pdydz+ (-r,,+ &xdz--r,) pdxdy

+ (.ry+ &'Lydy-tr,) pdxdz 2-8

':izv 1v:. Ez; 2-8 cne obtains

Y1x &x + &+ )Px )Pdxdz 2-9

SimiJar-y, thes -h,- v \-;rectýo'n sic>yplf,,t.
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-"Y= ( a3Y+ -+- +,&) p dxdydz 2-10

ay ax

From fluid dynamics5

= av au 2-11a7 TY, ax ay

Sa.w av) 2-11b
"C Y=' Z:Paw au

Cxz:zx=P ( @_..w+ au ) 2-11c

axOx= p+ 2 I1 2-i

av 2-1ieOy=-p+2p 2-11

Substituting Eq 2-11a through 2-1le into Eq 2-9 yields:

ýp +P ( Lu- + u) I dV 2-12• & =t--x ax---- ay---

Similarly, the surface forces in the y direction, Eq 2-10,

simplify to

p+•( a2V + _2V)lJdV 2-13

Summing the force components in the x-direction using Eq 2-

3, 2-7, and 2-12 results in:

pdV(u-ý- + v-Lu -22- + -L ( + -Ey-3)]I dN-avBdV 2-14
ax ay a X2 ay2

Since the plate is infinitesimally thin, the pressure

5Granger, 184.
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is uniform in both the x- and y-directions, hence any

derivatives of pressure with respect to x and y are zero.

Using this information, Eq 2-14 simplifies to:

u aUuvaU=•( 2 u+ ~u) oBz
-- --- U2v 2-15ax ay p ax 2 ay 2  P

The equation for conservation of linear momentum in the x-

direction will be referred to as Eq A. Similarly the

conservation of linear momentum in the y-direction becomes:

v+ avj .I av+ •V _+ -16

a-x V-y P ax 2 ay2  p

This will be referred to as Eq B.
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Chapter Three

Formulation of the

Energy Equation

The First Law of Thermodynamics states that the energy

accumulated in a control volume is equal to the energy

entering the control volume minus the energy leaving the

control volume.

The energy entering the control volume (C.V.) and the

energy leaving the control volume is composed of 6 :

Rate of energy accumulation in the C.V.= [1]

Rate of transfer of energy by fluid flow + [2]

Rate of heat transfer by conduction + [3]

Rate of internal heat generation - [4]

Rate of net work transfer from C.V. to the [5]

environment.

These terms can be expressed in the following manner:

[I] =AXAYy1- (pe) 3-1

Since we assume the flow to be steady, the time rate of

change of internal energy is zero, so [1] = 0.

From figure 3-1,

[2] =pve~x- [pve+aa (pve) Ay] Ax+p(uey- [pue+ (pue)A x]A y 3-2

6Bejan, 9.
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(Pve+( pve)dy)dx

:0 dy

p udy(p ue+ý- (Pue) dx) dy

dxI'p~yedx
Figure -3-1

Eq 3-2 simplifies to

[2] -pA~xAy (u- ae + e 3-3ax ay~

From Figure 3-2 one sees that

[3]=-(AxAy) (3-+-Ll)=AAVr 3-4

T (q + -- yd

dy

dx I
4 dx

F 4 gure 3-2
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The Fourier Law of heat transfer is

4=-kVT 3-5

Thus, Eq. 3-4 becomes:

[31 =AxAykV2 T 3-6

From Figure 3-2

[4] =AxAyi 3-7

No heat is generated in our fluid, so q'''=O and [4] = 0.

In order to calculate [5], the rate of net work

transfer from the C.V. to the environment, the forces that

exist at the interface between the control volume and the

environment must be known. As defined in Chapter Two, these

forces are called surface forces. The rate of work transfer

is:

But for steady flow, the surface forces do not change with

respect to time. Thus, Eq 3-8 simplifies to:

[5] =fps.i 3-9

The above term is analogous to heat produced by fluid

friction. The flows that are of concern are slow enough

that turbulence may be ignored. Hence the work done by the

surface forces will be neglected. In order to determine if

this is a realistic assumption, temperature profiles

predicted by the resulting energy equation should be
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compared to experimental results.

Combining all of the above terms results in

[1) = [2] + [3] + [4] - [5]

O=-pCPAxAy(uT+vT) +AxAykV2T+O_- 3-10

Rewriting the above yields

uaT+ aT k ( (3T+ aT)S"•--pcp• (x- •• 3-11
i eayo will 8X2 aey 2

This equation will be referred to as Eq C.
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Chapter Four

Prandtl Order Reduction and

Conversion to

Dimensionless Variables

The problem has been reduced to three equations in

terms of three unknowns: u, v, and T that are functions of

space, x and y. The equations may be simplified somewhat by

determining if any of the terms are relatively insignificant

and may be neglected. The technique of Prandtl Order

Reduction can be used to accomplish this.

The first step in the reduction process is to assign

each variable an order of magnitude. This indicates the

size of the values that the particular variable might

represent in comparison to other variables. For example,

the velocity u may be assigned an order of magnitude of 1

and the velocity v an order of magnitude of 5, because the

expected values of v are much smaller than the expected

values of u. Similarly, x has an order of magnitude of 1

and y has an order of magnitude of 8 because previous work

done in fluid mechanics indicates that velocity is

essentially constant except for a small region close to the

plate, so one expects the y-dimension to be much smaller

than the x-dimension. Recall Eq 2-15
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u-• U=1 ( -+ -2 U) -_--AV 2-15x ay p aOx 2 ay 2  p

Analyzing the orders of magnitude:

1 1+8 =2 (L + 1 oB) 4-1
1 8 p 12 -2 p

On the left side of the equation, all terms are of order of

magnitude 1. The two viscous terms, however, are of

different orders of magnitude. One has order of magnitude 1

while the other has an order of magnitude 1/a 2 , which is

much larger than one. Thus, we neglect the term with order

of magnitude 1. Eq 2-15 becomes:

UL@U +vSU• = RU oBz4-
O3x y p3 a~y2  p

Using the same method, Eq 2-16 becomes:

+ _v + v , u 4-3

Ox O7 y p ay 2  p

There now exist three equations relating the variables

u, v, T, x, and y. To write these equations in terms of

dimensionless parameters, define the following dimensionless

qualities:
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C-Z 4-4a

L

y=. 4-4b

v*= U 4-4c
U.

=T-To 4-4e

T.-T 0

Using Eq 4-4a through 4-4e, Eq's 4-2, 4-3, and 3-11 are

transformed to dimensionless parameters.

Recall Eq 4-2

au au = a1 u _ _B_4

(-!L) ( -- --uau -- )( •a °'Zv) -Un .x3Uyy 2  P ayp a

jU-r + V arnj Ur2 P LOB 4-6

a _U a _u a2 _U
U U. v U._ Vt_ U. _LcBzv 4-6

Urax U. a_ P PU.L a(.Y)2 PrU.
L L L

Eq 4-2 then becomes:

U---:+Vv" u'_ i uMv* 4-7ac a•% Re Aq 2

(Recall our definition of M and Re from Chapter One.)

Similarly, Eq 4-3 becomes:



18

Rve *V 12V•2+MU* 4-8
U6C OY Re O-M2

If we hold To constant

_as _L-) a• o 1. aT 4-9
(T TO)= ~ a
Ox ax ax ax

The same relationship holds for the derivative of (T-T 0 )

with respect to y and second derivatives with respect to

both x and y. We may use this to convert Eq 3-11 to

dimensionless form.

L 1 O(T-TO) _(T-_TO)

U. T--TO0  Ox

L 1 12 (T-TO) +2 (T-TO) 4-10
V. T._TOa pCp ax2 ay 2

This simplifies to:

a T-T a a T-To a2 T-To 0 2 T-T0

(U +- V T-TO-) k + 4-11

Q. a x U. 3.X P C-'U.L a (_l) 2  a (_Z)2
L L L L

Thus, Eq 3-11 becomes:

u.0O + v. O0 k (f0-2
Ae + 026) 4-12

-Y o - opcpu.L aC
2 0-2•

Equations 4-12, 4-7, and 4-8 do not fully
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mathematically state the problem. A set of boundary

conditions must be included. The boundary conditions come

from physical constraints of the fluid flow.

The first constraint is called the "no slip

condition." 7 This states that the velocity of the fluid at

the plate is zero.

u*=O at 9=0 BC (1)

v*=0 at ij=0

The second constraint is that at distances infinitely

far from the plate the velocity approaches the free stream

velocity.

aUs* as-O BC (2)

This leads to

u*'l as ii- BC (2)

The third boundary condition is at distances infinitely

far from the plate the shear stress is zero.

(=L(au+av)-0 as y-oo BC (3)ay ax

The technique of Prandtl Order Reduction shows that the

partial derivative of v with respect to x may be neglected:

7Stuart Churchill, Viscous Flows: the Practical Use of
Theory (Boston: Butterworth Publisher, 1988) 256.
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16 4-1361+

The boundary condition of zero shear stress simplifies to

au* as '9-0 BC (3)

Similar conditions exist for the temperature

distribution, T. From the definition of the function 0, 0

must equal 0 at the plate:

T-TO = TO-To =0 at ,i=0 BC (4)T.-To T.--%

Similarly 0 must approach 1 at distances infinitely far

from the plate:

"-T =I as nj-.o BC (5)T.- TO

A final boundary condition exists on the temperature

distribution. At distances infinitely far from the plate,

the temperature distribution should reach equilibrium and

therefore no heat should be transferred This means that:

as =0 asBC (6)

These boundary conditions, along with the equations,

constitute a set of partial differential equations which

model the problem.
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Chapter Five

Similarity Transformation

and First Solution Attempt

Now three equations relating the three unknown

functions u(x,y), v(x,y), and T(x,y) in dimensionless form

are known and the boundary conditions on the solutions are

known. It is possible, however, to express them in fewer

variables. Recall that for incompressible fluids:

au+ av=0 5-1

ax ay

Using this relationship to define a stream function '1 that

relates u and v.

UaT uo U alp - aT alp*

axa a'

Using these relationships, Eq 4-7 becomes:

aT" Cw'_ aw" a2w'_ 1 3" +MAT-- 5-4
-In3, aa a an We aC

Sinilarly, Eq 4-8 becomes:

_'_ (_ 5___-5
an aC2  aC ai-aC Re a12aC -1

Now the boundary conditions must be described in terms

of the stream function. The no slip condition becomes:
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--.- =oa 0 at i=o BC (1)

The boundary condition for the streamwise velocity

infinitely far from the plate becomes:

a--- as TI- BC (2)

The boundary condition on shear stress becomes:

-- -0*O as qBC (3)

For the first attempt at a solution, T was assumed to

have the form:

T"=A~aqbf (B•C a.d)

The partial derivatives of IF that appear in Eq 5-4 are:
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CI *=bab-1f (e) +A~d~a~c~qb-dlf 5-6a

a~*=Ab~b-l) Caqb- 2 f (C) +ABd(2b+d-1) C a-c, 1bd-if /(,C) +

AB 2 d 2Ca+2 cqlb+2 d- 2 f/H/(C 5-6b

a* Ab (b-1) (b-2) CaT~b-3f (e) +

ABd [3b (b+2d-2) + Wd-2) (d-1) Ca+c~b~d3f/ (C +

AB 2 3 d 2 (b~d-2) Ca+2c,.jb+2d-3f H (C) +AB3d3Ca+3cqb+3d-3f (3 (,E) 5-6c

a'' AaCa-1 1bf (e) +ABCC a~c- qb+df /(e) 5-6d

a2- =AabCa-lrl-ffe +AB (bc+ad+ad) Cacrbdf (c)acaq

+AB2 cd~a+2c-l Ib-2d-1f// (e) 5-6e

Where, for notational purposes, define E such that:

e=B~cqjd 5-7

Substituting Eq 5-6a through 5-6e into Eq 5-4 and

simplifying
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AabCa-19b-2 f 2 (E) +

AB (bc+ad+bcd-ad2 ) Ca+c-1 b+d-2f (e) fI (e) +

AB 2d(c+ad-bc) Ca+2C-11b÷2d2fI(C) f I (e) +

AB 2d(bc+ad) Ca+ 2 C-1Ib÷2 d-2f (e) f 1 (e)

- b(b-1) (b-2) aqb_ 3f(e) _AMaCa-1lbf(e)
Re

_ Bd [3b (b+2d-2) + (d-l) (d-2)] Ca÷+cb+d-3 f / (E) -ABMCCa+c-1IdfI (e)
Re

- 3B 2d(d-l) (d-2) Ca+2clb+2d-3f (C) - B 3 d 3 Ca+3cqb÷3d-3f( (E) =05-8

Re Re

The similarity transformation was chosen to transform

the partial differential equation involving the function 4r

into an ordinary differential equation involving the

function f. An ordinary differential equation is one where

all of the coefficients of the derivatives contain only

constants and powers of the argument of the function f.

This means that a, b, c, and d must be chosen in such a way

that the coefficients of the derivatives of f only involve

powers of £, but do NOT contain any free powers of ý or il.

In order to search for values of a, b, c, and d that will

satisfy these requirements, a table was created that lists

the coefficient of each term and the exponents of C and Tj

for that term, as well as the exponents after powers of £

were factored out.
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Constant zeta eta

Aab a-i b-2

A(ad+bcd+bc-ad') a+c-i b+d-2

epsilon a-I b-2

Ad(c-bc+ad) a+2c-i b+2d-2

epsilon a+c-i b+d-2

epsilon2  a-i b-2

Ad(bc-ad) a+2c-i b+2d-2

epsilon a+c-i b+d-2

epsilon2  a-i b-2

b(b-i) (b-2)/Re 0 -3

Ma -i 0

(d/Re) [(d-1) c d-3
(d-2)+3b(b+d-2)]

epsilon 0 -3

Mc c-i d

epsilon -I 0

3d 2 (b+d-i)/Re 2c 2d-3

epsilon c d-3

epsilon2  0 -3

d_3 3c 3d-3

epsilon 2c 2d-3

epsilon2  c d-3

epsilon3  0 -3
Table J-1

Choose a=O, b=2, c=-l, d=3. Eq 5-8 becomes:

8AE2Cf(e) f'(e) + 3 Ae3fI(C) f'(e) -6Ae3f(e) f"(e)
B B B

-- 6 0 ef'(E) + ME2f/(E) -- 108 E 2 f"(E) -_27RE3f(3) (E) =0 5-9
Re B Re Re

Using this definition of 'P., u* and v* become:
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U * =A [cf1(e) +2f(E)] 5-10

v"=ABC -2ij5 ff (C) 5-11

The resulting boundary conditions are:

u*=AIt [ef'(e) +2f) ()) =0 at n=0 BC (1)

v*=ABC-2. 5 f'(6) =0 at 11=0 BC (1)

The no slip conditions are met.

u*=Ao[-fo/(-) +2f(-)] =1 at 11=00 BC (2)

This cannot be used as a boundary condition for the computer

solution. The I which appears in Eq 5-10 makes it

impossible for u* to satisfy the boundary conditions. If

one defines f(-)=f' (-))=0, one obtains u" = 0 as TI approaches

infinity, not u*=l as il approaches infinity, which is a

physical constraint of any solution found.
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Chapter Six

Second Solution Attempt:

Blasius Analysis

The first similarity transformation attempted did not

give a viable solution. The next step is to examine a

solution to a similar problem that had been solved many

years ago. The solution to the problem of flow past a flat

plate without thermal or magnetic fields was solved in 1902

by Blasius using the method of selecting a similarity

transformation to change the partial differential equation

of the conservation of linear momentum in the x-direction

into an ordinary differential equation.8

Blasius assumed the following:

u=U.F(e); v=UG(e) 6-1

where

4E=--Y 6-280

and 8 was a function of x alone.

The streamline function P becomes

T =fudy= UF(e() de= U_&f (e) 6-3
0 0

where

8Granger, 713.
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f(E) F F(e) de6- 4  6-4
0

This definition yields

v=--aT _ [U.8'f(e) +U.6of'(e) ] 6-6

v* =-8f(e) +/oef" (6) 6-7

u=-2T =U.8 0f,(e) de - u*=f/(e) 6-8
ay dy

au*_ &a*_ f-(E) 6-9

22 " e f" (e) 6-10

C12U" _ • " fl'(e)a•- an y 2( 6-11

Define:

01o=_ ;d~ f'(e) = fed 6-12

Recall Eq 4-7

U-! Re f91.12Mv* 4-7ac oh R 0!42

Substituting 6-6 through 6-11 into Eq 4-7

a0oalf (C) fl"(e) +_Ifyo(C) _M8281f(C) +M 68ff'(e) =0 6-13

Re 000061

In order to make this an ordinary differential equation, all
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of the coefficients of the derivatives must involve only

constants and powers of e. For this to be true two

conditions must be satisfied at once:

d0 _a. =c; 62 d 0 =C 6-14

The only solution that satisfies this condition is for S. to

be a constant. This means that epsilon is a function of y

alone, which in turn means that u, which is a function of

epsilon, depends on y alone. Experience dictates, however,

that u depends also on x.
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Chapter Seven

Third Solution Attempt:

Modified Blasius Method

The third solution attempt involves slightly modifying

the Blasius method. Instead of assuming:

u=U.F(_) ; e__Y 7-160

u was assumed to have a slightly different form

U=U.xaybF(E); (c -y 7-280

Following an analysis similar to that done in the Blasius

solution for a flat plate presented in Chapter Six

Y Y

'1J=fudy=fUdx aybF(t) dy=u~xaf (E8,) bF(e) 80de 7-3
0 0 80 0

ca,

T=U.,xa60bff(e) ; f(c) =febF(e)dc 7-4

0

Using Eq 7-4, one obtains the following expressions:

ay 075

x 0 (U(b+l)f Xabefl(e) 7-5b

Ou._ 82 =UPaxa_8bf/(e) +U.bXa5b-11of,I(e) _U xab-8lCf/,(e)
ax ax ay 0xa16 0(0 7-5c
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2u _ =u..x a8b-lf" '(e) 7-5d

•gU v .X~abobfm€ 7-5d
ay ay2

Entering Eq 7-5a through 7-5e into Eq 4-2 yields the

following:

U.~aX212-bf I, (e) if' (E) +-UbX28b-• fl (e) f'(e)
CL ,0 0 0 fl. "LT• 2 -A ' / (e

-U! 2a821,-1 / /f ,/ _11e) U2a-x2a-18o2f ( f//(e

+U2X2a82b-1,1EfI/ (4E) f (E) U.•a2f(e) f"+ (OUaXa-j~bo(

p p

+-Ea U. (b+l)xaaboSlf (e) Ba 8b8/,E,(e) 7-6pp

Simplifying Eq 7-6 by dividing by U. x' 8ob-2 yields:

U.[axa-1o' 2 bxa6•ol8] i'i'-u [ ax0-00 + 1bl) x 8a80681I ff H

_J• f///+ BG ax-183of+ Bo (b+l) a B1-foLoa 2efI= 7-7
P P P P

A 80 function that makes this an ordinary differential

equation must now be found. There are a number of

coefficients that involve B's and powers of x:
1)X.-1b+=r a,•b+l8 881/

1) X1- o 2 =Cl; 2) xA"0 u=C2; 3) x-18'=C3; 4) 6o60=C4

Working with condition (3) gives:

X_183=C3 _ 6o=C3x 1 7-8

0 0 X
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This is interesting because it indicates that:

4E= _Y y 4 3=Y 9
I x7-X3

which is similar to the transformation that changed the

equation from a partial differential equation into an

ordinary differential equation in Chapter Five. In that

transformation, a function of y3 over x was used, whereas in

this solution a function of y over x"' is used.

Next one must check to see if this function of 80

satisfies the other conditions. Looking at condition 4:

6060= (C3x3)2 (3C3x 3)= -C3 3=Constant 7-10
3 3

Thus condition 4 is satisfied.

Looking at condition 1

1 3 a-3 +b÷2

Xa-16b+2 -Xa-1 1 3a3)-b2+=bx 7-11
0 (C3x 3 )b+ 2 =Cx 3 =Constant - 3a+b-l=O

Looking at condition 2

1 -2 3a~b+1-2
"0 0=Xa (C3X3)b+1(!C3x 3 )=Cx 3

3

= Constant - 3a+b-I = 0 7-12

Thus 3a + b - 1 = 0 is a relationship between a and b

that must exist in order to satisfy conditions 1 and 2. Now

examine the boundary conditions. Recall from Eq 7-2 that

this analysis began with the assumption:
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u=U.xaybF(e) - u*=xaybF(c) 7-2

One of the boundary conditions is that u approaches 1

as y approaches infinity (BC 2). But as y approaches

infinity, u approaches infinity for this definition of u.

One way to attempt to solve this dilemma is to modify the

boundary condition to state that u* approaches 1 as y

approaches some multiple of 8. rather than allowing y to

approach infinity.

I ~ 3+b

u .=XaybF(_Y)=xa(CX-3)bF( CX =cbx 3 F(C)=1 3a+b=O 7-13
x3 x 3

But 3a+b=O and 3a+b=l are inconsistent equations. A

solution that matches the boundary conditions does not

exist.

Note that this is the same situation encountered with

the first solution in Chapter Five. In the first solution a

transformation was found that yielded an ordinary

differential equation, but could not satisfy the boundary

conditions. Here, using a very similar transformation, the

same problem is encountered.
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Chapter Eight

Fourth Solution Attempt:

Constrained Magnetic Field

Recall from the second solution attempt in Chapter Six

utilizing the Blasius method of searching for a similarity

transformation that Eq 6-13 was:

Lf(3) (E) +8081f(E) f"(e) -M8281f(e) +M5•82cf'(e) =0 6-13

Where we had defined the following in Eq 6-12

d1 = f df(e) 6-12

Let M = M0'T-1. Recall:

C=a-L 806=1 8-180 e

Using Eq 8-1 and the new definition of M to rewrite Eq 6-13:

_f(3)c) +58fc)f()MoF-lof()+Mi1l 0 efe) 8-2
Re 0 0

Simplifying Eq 8-2 yields

If(f (3) +808/f(e) f"(e) -Mo15508of(e) +Moo60 f'(e) =0 8-3
Re

Now one must change this into an ordinary differential

equation. Examining the coefficients of the derivatives in

Eq 8-3, one finds that 80 8.' must be a constant.

808/=C 8-4

80 = 0 at x = 0. Thus, Eq 8-4 yields
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o==; oT 8-5

Verifying Eq 8-5 satisfies Eq 8-4

6' 1= (V -1• 7C) = ( -1) (2 C) = C

Recall that for the transformation the following

expressions were formulated (See chapter Six):

U= U.f' 6-8

v=-U.61f (C) +U81ef' (C) = (U.) (-1Ix 1) [efI(C) -f(C6-6

Using the boundary conditions on u and v to establish

the boundary conditions on the function f(E).

u=U.f'(e) =0 at y=0 - f/(0) =0 BC (1)

1 1
v=(1) (UX 2) [ef'(C) -f(E)] =0 at y=0 - f(0) =0 BC (1)

u=U.f'(e) =U. as y-- 0 , -f'(-) =1 BC (2)

This constitutes an ordinary differential equation with

a set of boundary conditions that may be solved using a

computer. Using an approach known as the "shooting" method,

Professor Malek-Madani of the United States Naval Academy

Math Department wrote a program for Mathematica t m software

that was capable of solving these equations. The solution

method involves treating the problem as an initial value

problem and iteratively converging the solution to the
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underlying boundary value problem. See appendix A for a

copy of the Mathematica" program.
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Chapter Nine

Discussion of Results

The computer simulation was used to see what variations

in the magnetic field did to the velocity profile. The

simulation was run and the outputs are shown for various

"Magnetic Index" numbers and Reynolds Numbers. These

numbers are a representation of the strength of the magnetic

force and the viscous force exerted upon the fluid flow.

Recall from Chapter One that the definition of the

Magnetic Index number was:

M= LaB___£

Some typical figures are

L = 25 cm

a = 0.001 Molarity (.001 mole free charges / Liter)

B= 1.0 Gauss (Approximately twice the strength of the

Earth's magnetic Field.)

U = 7 cm/s

p = 1000 kg/m3 .

These figures yield a Magnetic Index number M = 0.0344 and a

Reynolds Number of Re = 17,500 . This gives an idea of the

magnitude of the numbers that should be used in the computer

simulation. Appendix B contains computer simulations for

various Re and M values.

These graphs include plots of u* and v" versus position
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for various Reynolds numbers and Magnetic Index numbers.

Three values of Reynolds number were used: 13000, 17500, and

22000; for each of these Reynolds numbers three values of

the Magnetic Index number were used: 0 (to show the velocity

profile with no magnetic field), 0.5, and -0.5 One trial

with M = 1.5 was included (Figure B-Il) to show exaggerated

effects of the magnetic field. For the simulation with Re -

17500 and Mo = 0.5 graphs of f(e), f' le) and f'' e() versus

epsilon were also included.

These graphs are believable because they show a number

of characteristics the equations developed from fluid flow

theory indicate should appear.

First of all it can be seen that the "boundary layer",

the line where the streamwise velocity approaches the free

stream velocity, closely follows the boundary layer

predicted by the classical Blasius Solution for flow without

a magnetic field. This can be seen by comparing any of the

simulation outputs with a graph of the boundary layer

predicted by classical theory,

apredicted = 5 V .

A graph of the predicted boundary layer versus C is included

after the graph of the first simulation output as Figure B-

3. Compare Figure B-I and Figure B-3 and you can see that

for zero magnetic field, this simulation predicts a boundary

layer at Tj equals approximately 0.035 for 1 = 1. Figure
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B-3, the predicted boundary layer according to the Blasius

Solution, shows a boundary layer of 0.037 for • = 1.

A second detail shown in the figures that is supported

by theory is that the velocity perpendicular to the plate,

v, is affected by changes in M to a larger degree than the

streamwise velocity, u. Compare Figure B-1 and B-2 with

Figure B-4 and B-5 to see this difference. For the same

change in M, the u distribution does not change much (Figure

B-1 compared to Figure B-4). A slight hump is produced at

the boundary layer in Figure B-4. The v distribution,

however, changes much more noticeably (Figure B-2 compared

to Figure B-5). In Figure B-5 we see that the v

distribution peaks at a value of 0.015 and settles to a

value of approximately 0.005, as compared to Figure B-2,

where the v distribution peaks at a value of 0.02 and

settles there. This difference in the sensitivity to

changes in the magnetic field makes sense, because the

magnetic force involves the cross product of the magnetic

field and the velocity of the charged particles (See Eq 2-

6). The velocity in the streamwise direction (x-direction)

is much larger than the velocity perpendicular to the plate

(y-direction). This means that the magnetic force operating

in the y-direction is greater than the magnetic force

operating in the x-direction, so a change in M should have a

greater affect on the velocity in the y-direction.

Along the same lines, we notice that the "hump"
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produced by M = 0.5 is slightly larger for larger Reynolds

Numbers. This can be seen by looking at Figure B-15 and

Figure B-21. Figure B-15 corresponds to a slower flow than

Figure B-21, and the "hump" caused by the magnetic field is

less noticeable for this slower flow. This corresponds to

theory because Reynolds Number is directly proportional to

the free stream velocity. A higher Reynolds number equates

to a higher velocity, which in turn equates to larger

magnetic forces.

These figures show some interesting trends. One

observation that can be made is that the slope of the

velocity fields, both u and v, is affected by changing M.

By comparing Figures B-I and B-4, one can see that as M

increases from 0 to 0.5, u approaches the free stream

velocity more quickly. In fact, u appears to overshoot the

free stream velocity and then settle back to match the free

stream velocity. This overshoot is even more exaggerated in

Figure B-II, where u reaches a value of 1.2 times the free

stream velocity then settles to a final value matching the

free stream velocity. Conversely, u appears to "flatten

out" when M changes from 0 to -0.5, as can be seen by

comparing Figures B-i and B-9. The velocity u reaches a

higher final value in Figure B-9 than in Figure B-i, but

approaches this final velocity more slowly.

The effect the of magnetic field on the slope is even

more evident in the graphs of the v distributions.
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Comparing Figures B-2 and B-5 show that as the magnetic

field increases from 0 to 0.5, v changes the same way that u

changed. Figure B-5 shows that the v distribution rises

more sharply than in figure B-2, then settles. Similarly,

Figure B-10 shows that for a negative M, the v distribution

rises more slowly but settles at a higher value than the v

distribution in Figure B-2. This indicates that magnetic

fields can be used to distribute flows more evenly or create

sharper boundary layers.

The figures also show that negative values of M result

in higher velocities at greater distances from the plate.

This can be seen by comparing figure B-i and B-9, B-13 and

B-17, and B-19 and B-23. In each case the velocities u and

v reach higher values for negative values of M. It may be

possible to use magnetic fields to control the speed of

flows.

What these simulations indicate is that the velocity

profile can be shaped by using a magnetic field. This could

have many applications. Fluid flow is used mostly as a

process of transporting something, whether it is heat being

transported by a pipe in a radiator or oxygen being

transported by blood in an artery, and these processes of

transportation often depend on fluid velocity. Thus,

controlling the shape of the velocity profile, allows

control of the transport process. One could transport heat

through a pipe with less heat loss if one could shape the
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velocity profile properly. One could aid in the diffusion

of oxygen across artery membranes by controlling the

boundary layer of blood flow.

The next step that needs to be taken in this research

is to validate the computer simulations by running trials

and taking measurements to verify the predicted results with

experimental data. This study was supposed to generate

empirical data, but failed to do so. This was due in part

to the fact that the laser doppler velocimeter was

inoperable. A hot film anemometer was tried, but this

caused a number of problems.

In addition to this, the computer simulation must be

expanded to include Eq (C), the Energy Conservation

Equation, so a graph of the predicted temperature profile

can be created in the same way that graphs of u and v were

created.
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A~~endix A:

Mathematica Program



I[Xl... X2-, X3-.., t-1 - X2; g[xl-.., x2-... x3-,.. t-J - x3;
re = 17500; MO = .5;
Ci = re 110/2;
C2 - re/2;
h~xL.. x2-.., x3..,. t-) = C1 t"A(-1) x1 - C1 x2 - C2 x1 x3;

(*We define f-f (epsilon). g-f'(epsilon), and h - f'Cepsilon)*)
(*Then we solve our equation for f...Cepsil on) = .*

tstart - 0.000001;
t~f inal - 6;

F~b-J := Module[fsoll . sol = NDSolve({xl Ert) == f (xi (tU x2[t], x3[tl .t)
x2 '[U g[xi [tU x2[t). x3[tb~t),
x3 [U = h~xi [t. x2(tJ, x3[tl t],
x1 (tstart) == 0, x2 (tstartJ == 0, x3[(tstLart] == bl, {x1l, x2, x33,

out = Eval uate [ x1 [t). x2 [tJ .x0[t) I/. sol/. t - > tf inal)I;
{out[[1.2)J- I)]

(*Thi s modul e takes has the i niti al val ue of f "(epsil1on) as a vari abl e*)
(*and gives the final value of f'Cepsilon) - 1 as output*)

e = FindRoct[F~b) [1l)). (b, 1, 0.S1);

C*This tells us which initial value of f'' minimizes *
(*the value of f'Ctfinal) - 1 *)

soil = NDSolve((xlf[tJ = f~xi Et). x2[t). x3(tJtJ.
x2 Et) -- g~xi t), g2[t], x3Et .t,
x3'[tJ - h~xi [tJ x2[tJ. x3[tJtJ.
xl (tstart) -- 0. x2Etstart) -- 0. x3[tstartJ = eL[[1,2J3).

(*Thi s sal yes the system of equati ons we have set up usi ng*)
(*the initial value for f' we calculated using the FindRoot function.*)

ploti - Plot~xi Et) /. sall, (t, tstart, tfinall,
AxesLabel -> Vepsilon',"f~epsilon)"L,
PlotLabel->f" -Re" re," - Mo, graph of fCz)"MO3J

PSP rint (p1oti J

plot2 = Plot[x2[t) /. soil, {t. tstart. tfinall,
AxesLabel >(esonfepi1n),

PlotLabel->{" =Re" re," = Mo. graph of f'(z)"MO3J

1PS Pr i n [p'I o t2)

plot3 =Plot~x3[-LJ /. soil, {t, tstart,,t~finallb
AxesLabel _> {"epsilIon", "f'epsiIcr) "3,
F'lctLabel-'f" - Re" re," M o, graph of f"Cz)"MO3)~

PSPri nt [pl ot3l



plot3 =Plot[x3(tJ I.Soil, it, tstart, tfinall.
AxesLabel -> ("epsilon". "f - epsil1on)*I,
PlotLabel-W{ Re" re," - Mo. graph of f'(z)"MOIJ

PSPri nt [p1 ot3J

u~t-j = x2[tJ 1. soil;

y (t- = .5 (t x2 [t] - xl [t])I soil1;

plot4 - Plot3D[u[y/SqrtL~xlj([IJ), ix, 0.1. 13, fy, 0.00001, .41.
Plot-Label V> =" Re* re, " = Mo" MO,"graph of u(x,y)"),
AxesLabel V>{zeta","eta",.u~x,yYLI
PlotPoints-> 3-0]1

plotS - Plot3D[XAC-.5) y[XAC-.5) g][[])I. (x. 0.1.,1I, fy, 0.00001. .41,
PlotLabel -> ."graph of Y~x.y)".
AxesLabel -> {"zeta",weta","v(x,y)"L,

0 PlotPoints-> 30]
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Appendix B:

Computer

Simulation Trials
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Figure B-1
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